847. Infrared Spectra of Some Nitrato-co-ordination Complexes.

By B. M. GATEHOUSE, S. E. LIVINGSTONE, and R. S. NYHOLM.

The infrared absorption spectra of a number of nitrato-complexes of metals have been examined in the region between 4000 and 700 cm.⁻¹. Assignments have been made for vibrations characteristic of the coordinated nitrato-group. Strong absorption bands, which do not occur in ionic nitrates, appear in the regions 1530-1480 and 1290-1250 cm⁻¹. The absorption arising from the vibration v_1 , theoretically inactive for NO₃⁻ ion, occurs as a strong peak in the nitrato-complexes within the range 1034-970 cm.⁻¹, here designated v_2 and due to $-O-NO_2$ stretching.

RECENTLY Shimura and Tsuchida¹ examined some nitratoammino-complexes of tervalent cobalt in the visible and ultraviolet region. However, no data on infrared absorption of nitrato-complexes have been reported. The present work was undertaken to ascertain whether there were features in the infrared spectra which could be used to distinguish co-ordinated nitrato-groups from the nitrate ion in metal complexes.

EXPERIMENTAL

Determination of Spectra.—A Grubb-Parsons double-beam infrared spectrometer, equipped with an S3A monochromator and a rock-salt prism, was used. The samples were ground in an agate vibration mill. The mulling agents used were Nujol $(2-15 \mu)$ and hexachlorobutadiene $(5-8\mu)$. The latter was used for the region obscured by Nujol absorption bands.

The samples were examined between rock-salt plates; in cases where it appeared likely that there might be some replacement of a nitrato-group by chloride from the rock-salt plates, the plates used were coated with a fine film of polystyrene, as supplied by Grubb-Parsons.

Preparation of Compounds.—Hexamminocobalt(III) chloride was prepared as described by Gmelin² (Found: Cl, 39.7; Co, 22.2. Calc. for H₁₈N₆Cl₃Co: Cl, 39.8; Co, 22.0%). From it was prepared hexamminocobalt(III) nitrate by treatment with silver nitrate³ and subsequent recrystallization (Found: Co, 17.0. Calc. for H₁₈O₉N₉Co: Co, 17.0%). Carbonatotetramminocobalt(III) nitrate hemihydrate was prepared as described by Gmelin⁴ (Found: Co, 22.7. Calc. for $CH_{12}O_8N_5Co, \frac{1}{2}H_2O$: Co, 22.8%), and dinitratotetramminocobalt(III) nitrate monohydrate was prepared from it by treatment with nitric acid 5 (Found: Co, 17.6; H₂O, 5.4. Calc. for $H_{14}O_{10}N_7Co$: Co, 17.8; H_2O , 5.4%). Nitratopentamminocobalt(III) nitrate was prepared as described by Gmelin ⁶ (Found: Co, 17.8. Calc. for H₁₅O₉N₈Co: Co, 17.9%). This (0.7 g.) was dissolved in cold water (175 ml.) containing a few drops of nitric acid, and treated with a solution of potassium chloroplatinate(II) (0.9 g.) in water (30 ml.). Nitratopentamminocobalt(III) chloroplatinate(II) was precipitated as fine pinkish-brown crystals, which were filtered off, and washed with water, then acetone (Found: Cl, 25.7; N, 15.8. H₁₅O₃N₆Cl₄CoPt requires Cl, 26.1; N, 15.5%).

Nitratochlorotetramminocobalt(III) chloride hemihydrate. Dinitratopentamminocobalt(III) nitrate monohydrate (2 g.) was treated on a filter-paper with ln-sulphuric acid (30 ml.), warmed to 30°. The filtrate was allowed to run into ice-cold concentrated hydrochloric acid (100 ml.). The compound was obtained as a purplish-pink precipitate, which was washed with ice-cold hydrochloric acid, then acetone (Found: Co, 21.3; Cl, 26.5; N, 25.2; H₂O, 3.9. $H_{12}O_{3}N_{5}Cl_{2}Co, \frac{1}{2}H_{2}O$ requires Co, 21.9; Cl, 26.4; N, 26.0; $H_{2}O, 3.3\%$).

Dinitratodiaquopalladium(II). Palladium was dissolved in concentrated nitric acid, and the solution evaporated to small bulk. The mixture was cooled, and the light brown crystals filtered off, pressed almost dry, and dried in vacuo over sodium hydroxide (Found: Pd, 40.0. Calc. for $H_4O_8N_2Pd$: Pd, 40.0%).

- ¹ Shimura and Tsuchida, J. Chem. Soc. Japan, 1956, 77, 734.
- ² Gmelin, "Handbuch der anorganische Chemie," Verlag Chemie, Berlin, 1930, 58, B, 51. ³ Idem, ibid., p. 49.
- ⁴ Idem, ibid., p. 279.
- ⁵ Idem, ibid., p. 227.
 ⁶ Idem, ibid., p. 145.

Dinitrato-2: 2'-dipyridylpalladium(II) was prepared as described by Livingstone ⁷ (Found: N, 14.0; Pd, 27.2. Calc. for $C_{10}H_8O_6N_4Pd$: N, 14.6; Pd, 27.5%).

cis-*Tetranitratodiamminoplatinum*(IV). *cis*-Dichlorodiamminoplatinum(II), dissolved in dilute nitric acid, was treated with 2 equiv. of silver nitrate. The silver chloride was filtered off, and the platinum oxidized to platinum(IV) by adding concentrated nitric acid and evaporating the solution almost to dryness, pale yellow crystals being deposited (Found: Pt, 40.4. Calc. for $H_{e}O_{12}N_{e}Pt$: Pt, 40.8%).

trans-Tetranitratodiamminoplatinum(IV) was prepared analogously (Found: Pt, 41.1%).

Potassium hexanitratocerate (IV). Precipitated ceric oxide was dissolved in hot 8N-nitric acid containing 2 equiv. of potassium nitrate. The solution was concentrated to small bulk and cooled. The *product* was filtered off and recrystallized from 8N-nitric acid. The orange crystals were pressed almost dry and dried *in vacuo* over sodium hydroxide (Found: Ce, 23.1. $O_{18}N_8$ CeK requires Ce, 23.7%).

Dinitratobis(triethylphosphine)nickel(II). A sample of this compound was kindly given by Dr. N. S. Gill (Found: C, 35.5; H, 7.4. Calc. for $C_{12}H_{30}O_6N_2P_2Ni$: C, 34.4; H, 7.2%).

RESULTS AND DISCUSSION

The frequencies of the absorption peaks of the compounds examined are listed in Table 1. The spectrum of hexamminocobalt(III) chloride was obtained for comparison to ascertain which absorption bands arise from the nitrate group in the cobaltammine complexes studied. In the infrared spectrum of $[Co(NH_3)_6]Cl_3$ there are no sharp bands in the vicinity of 825 and 1050 cm.⁻¹, where intense absorption occurs in the cobaltammine nitrates. However, there is a strong sharp peak at 1328 cm.⁻¹, with two weak shoulders on the higher-frequency side, arising from the symmetric deformation vibration of the NH₃ group. This band is obscured by a strong band when the compounds contain the NO₃⁻ ion.

The absorption frequencies 9 for the NO₃⁻ ion, which belongs to the point group D_{3h} (the latter includes all plane trigonally symmetric XY₃ type molecules), 9 are listed in Table 1 together with the vibration types, activity in the Raman and infrared spectra, and assignments.

~	-
LADTE	
INDLL	

Type 14	Raman	Infrared	NO ₃ -	cm1	Assignment
Â,'	а	ia	V1	1050	N-O stretching
$A_{2}^{\dagger \prime \prime}$	ia	a	v_2	831	NO ₂ deformation
E	a	a	ν_3	1390	NO ₂ asym. str.
E'	a	a	ν_4	720	Planar rocking

a = active; ia = inactive.

Miller and Wilkins¹⁰ reported the spectra of ten ionic nitrates [e.g., KNO₃ and $Co(NO_3)_2, 6H_2O$], in all of which v_3 appears very strongly in the range 1390—1350 cm.⁻¹, and v_2 (of medium intensity) in the range 836—815 cm.⁻¹. It has been observed by Mizushima and Quagliano¹¹ that, in addition to the active frequencies for the NO₃⁻ ion, the forbidden frequency (v_1) appears in the infrared spectrum of compounds when the nitrate ion is outside the co-ordination sphere. They attribute this to deformation of the ion in the field of the crystal. Calcium nitrate, alone of the nitrates investigated by Miller and Wilkins,¹⁰ shows a weak absorption at 1044 cm.⁻¹, which corresponds to the forbidden frequency v_1 for the nitrate ion. This forbidden frequency in the region of 1050 cm.⁻¹ appears weakly in all the complexes containing the free nitrate ion listed in Table 3.

In complexes where the nitrato-group is covalently bound through one oxygen atom, the symmetry is lowered and the group now belongs to the point group $C_{2^{\nu}}$ and has the vibration types and properties listed in Table 3.

The NO₂ bending and planar rocking vibrations of the ONO₂ group would give ⁷ Livingstone, J. Proc. Roy. Soc. New South Wales, 1952, **86**, 35.

rise to frequencies beyond the region observed during this investigation. The above assignments have been made by reference to the spectrum of methyl nitrate.8

The strong absorption which occurs in $[Pd(H_2O)_2(NO_3)_2]$ and in $[Ni(PEt_3)_2(NO_3)_2]$ at about 1360 cm.⁻¹ can be ascribed to instability of these two complexes leading to some decomposition.

			·				
		NH_{3} and		NO -		NH ₃ and	
[Co(NH ₃) ₆](NO ₃) ₃	×4	$\begin{cases} 1376s \\ 13$	<i>v</i> ₁	V1NO8	<i>v</i> ₂	V2NO3	νe
$[Co(NH_3)_4CO_3]NO_3, \frac{1}{2}H_2O$		$\begin{cases} 1299sh \\ 1416sh \\ 1391s \end{cases}$		1045w		823s { 831m { 818m	
$[Co(NH_3)_4(NO_3)_2]NO_3,H_2O$	1499s	{ 1344sh { 1393s { 1348sh	1266s	1047w 10 49w	1010s	825m	800w
$[Co(NH_3)_5NO_3](NO_3)_2$	1495s	{ 1377vs { 1330sh	1269s	1052w 1032w	1011s	828s	80 3 w
$[Co(NH_3)_4NO_3\cdot Cl]Cl, \frac{1}{2}H_2O$	1488s	{ 1387m	1282s	10524	101 3 s	825w	797w
[Co(NH ₃) ₅ NO ₃]PtCl ₄	1481m	$\begin{cases} 13145 \\ 1362w \\ 1339m \\ 1326m \end{cases}$	1269s	1027w	1012s		796s
[Pd(NO ₃) ₂ dipy]	1517s 1502s	1319w {	1292sh 1274s 1250sb	{	989s 979s 975s		801s
[Pd(NO ₃) ₂ (H ₂ O) ₂	1502s	{ 1362vs	19746	L L	088		797sh
[Ni(PEt ₃) ₂ (NO ₃) ₂]	1513m	{ 1418sh	12745 1272s		1018s		805m
<i>cis</i> -[Pt(NH ₃) ₂ (NO ₃) ₄]	1529s	$\begin{cases} 1339VS \\ 1387m \\ 1339W \\ 1326W \end{cases}$	1290sh 1276sh 1264s	{	980s 956s	823s	781 w
trans-[Pt(NH ₃) ₂ (NO ₃) ₄]	1522s	1330m	1253s		970bs	{ 821m 816m	
K ₂ [Ce(NO ₃) ₆]	1531s	$1387w$ {	1290s 1277sb		1034vs	orom	804s
CH ₃ NO ₃	1672 vs		1287s		854s		759m

TABLE 2. Infrared absorption bands.

w = weak, m = medium, s = strong, vs = very strong, sh = shoulder, bs = broad, strong, dipy = 2: 2'-dipyridyl.

Bands at 901 and 904 cm.⁻¹ were observed in $[Pd(NO_3)_2(H_2O)_2]$ and trans- $[Pt(NH_3)_2(NO_3)_4]$, respectively. These are not assigned at present.

TABLE 3.

Type 14	Raman	Infrared	ONO ₂	cm1	Assignment
A_1	a	a	ν_3	not obs.	NO ₂ bending
A_1	a	a	νī	1290 - 1253	NO ₂ sym. str.
A_1	a	а	ν_2	1034-970	N-Ō str.
B_2	a	a	v	800781	Nonplanar rock.
B_1	a	a	ν_{A}	15311481	Asym. str.
B_1	a	a	v_5	not obs.	Planar rock.

The frequency of the N⁻O stretching vibration would be expected to vary considerably in going from an electrostatically to a covalently bound nitrato-group. The frequency of the absorption band (v_2) of the nitrato-complexes was found to lie between the extremes, on the one hand, of the observed frequency (1050 cm.⁻¹) for an ionic nitrate, and, on the other hand, of the observed frequency (854 cm.⁻¹) of covalent •O•NO₂ in methyl nitrate. In methyl nitrate it is difficult to imagine the •O·NO₂ group as being anything other than covalently bound, whereas in metal complexes the bonding between the nitrato-group and

⁸ Brand and Cawthon, J. Amer. Chem. Soc., 1955, 77, 319.
⁹ Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," van Nostrand, New York 1945, p. 178. ¹⁰ Miller and Wilkins, Analyt. Chem., 1952, **24**, 1253.

¹¹ Mizushima and Quagliano, J. Amer. Chem. Soc., 1953, 75, 4870.

the metal could be regarded as being at least partly electrostatic. This means that the amount of overlap between the orbital of the oxygen of the $\cdot O \cdot NO_2$ group and that of the metal atom is smaller than in the case of a strong covalent bond. Using the frequency of the absorption band (v_2) as a criterion of the degree of covalent character of the metal-nitrate bond, we obtain the following series: $Ce^{IV} < Ni^{II} < Co^{III} < Pd^{II} < Pt^{IV}$. The results obtained for the compounds $[Pd(H_2O)_2(NO_3)_2]$ and $K_2[Ce(NO_3)_6]$ indicate that in them the nitrato-groups are not purely ionic. Since this work was done the spectrum of $Zn_3Pr_2(NO_3)_6, 24H_2O$ has been reported.¹² It displays similar splitting of v_3 into (a) and (b) with frequencies 1481—1475 and 1357—1323 cm.⁻¹, respectively. The absorption band v_2 appears at 1047 cm.⁻¹. This frequency indicates that the degree of covalent character of the metal-nitrate bond for Pr^{III} is less than that for Ce^{IV}.

The splitting of the bands (v_4) , (v_1) , and (v_2) , observed in [Pd dipy $(NO_3)_2$], arises from the lower symmetry of this compound owing to the two nitrato-groups' being in *cis*positions; similar phenomena have been observed ¹³ for *cis*-dinitro-metal complexes.

Finally, strong absorption bands in the regions 1530-1480 and 1290-1250 cm.⁻¹ in metal compounds containing an NO₃ group, are indicative that the nitrato-group is co-ordinated to the metal atom.

The authors acknowledge helpful criticism by Professor D. P. Craig and Dr. D. J. Millen of University College, London, and Professor J. V. Quagliano and Bro. Columba Curran of the University of Notre Dame, Indiana. One of them (B. M. G.) gratefully acknowledges a grant from the United Kingdom Atomic Energy Authority.

WILLIAM RAMSAY AND RALPH FORSTER LABORATORIES, UNIVERSITY COLLEGE, LONDON, W.C.1.

[Received, May 29th, 1957.]

- ¹² Häfele, Z. Physik, 1957, 148, 262.
- ¹³ Gatehouse, unpublished work.
- ¹⁴ Meister et al., Research Publications, Illinois Institute of Technology, Vol. 6, No. 1, Jan. 1948.